Macromolecular Crowding Induces Holo α-Lactalbumin Aggregation by Converting to Its Apo Form

نویسندگان

  • Shruti Mittal
  • Laishram Rajendrakumar Singh
چکیده

Macromolecular crowding has been shown to have an exacerbating effect on the aggregation propensity of amyloidogenic proteins; while having an inhibitory effect on the non-amyloidogenic proteins. However, the results concerning aggregation propensity of non-amyloidogenic proteins have not been convincing due to the contrasting effect on holo-LA, which despite being a non-amyloidogenic protein was observed to aggregate under crowded conditions. In the present study, we have extensively characterized the crowding-induced holo-LA aggregates and investigated the possible mechanism responsible for the aggregation process. We discovered that macromolecular crowding reduces the calcium binding affinity of holo-LA resulting in the formation of apo-LA (the calcium-depleted form of holo-LA) leading to aggregate formation. Another finding is that calcium acts as a chaperone capable of inhibiting and dissociating crowding-induced holo-LA aggregates. The study has a direct implication to Alzheimer Disease as the results invoke a new mechanism to prevent Aβ fibrillation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Hoffmeister Salts on the Chaperoning Action of β-Casein in Preventing Aggregation of Reduced β-Lactalbumin

Protein aggregation and precipitation is associated with many debilitating diseases including Alzheimer's, Parkinson's, and light-chain amyloidosis. β-Casein, a member of the casein family, has been demonstrated to exhibit chaperone-like activity to protect protein form aggregation. Hofmeister salts (lyotropice series) are a class of ions which have an effect on the solubility and also the stab...

متن کامل

Denatured State Structural Property Determines Protein Stabilization by Macromolecular Crowding: A Thermodynamic and Structural Approach

Understanding of protein structure and stability gained to date has been acquired through investigations made under dilute conditions where total macromolecular concentration never surpasses 10 g l(-1). However, biological macromolecules are known to evolve and function under crowded intracellular environments that comprises of proteins, nucleic acids, ribosomes and carbohydrates etc. Crowded e...

متن کامل

Crystal structures of apo- and holo-bovine alpha-lactalbumin at 2. 2-A resolution reveal an effect of calcium on inter-lobe interactions.

High affinity binding of Ca(2+) to alpha-lactalbumin (LA) stabilizes the native structure and is required for the efficient generation of native protein with correct disulfide bonds from the reduced denatured state. A progressive increase in affinity of LA conformers for Ca(2+) as they develop increasingly native structures can account for the tendency of the apo form to assume a molten globule...

متن کامل

First-order rate-determining aggregation mechanism of p53 and its implications.

Aggregation of p53 is initiated by first-order processes that generate an aggregation-prone state with parallel pathways of major or partial unfolding. Here, we elaborate the mechanism and explore its consequences, beginning with the core domain and extending to the full-length p53 mutant Y220C. Production of large light-scattering particles was slower than formation of the Thioflavin T-binding...

متن کامل

The Role of Crowded Physiological Environments in Prion and Prion-like Protein Aggregation

Prion diseases and prion-like protein misfolding diseases are related to the accumulation of abnormal aggregates of the normal host proteins including prion proteins and Tau protein. These proteins possess self-templating and transmissible characteristics. The crowded physiological environments where the aggregation of these amyloidogenic proteins takes place can be imitated in vitro by the add...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014